The Structure and Properties of Tungsten Oxide on Silica and on Alumina

High-resolution transmission electron microscopy (TEM) has been used to determine the size of metal clusters on oxide supports (1-3). When chemisorption studies are coupled with electron microscopy, it is sometimes possible to assign "raft" configurations to these clusters and establish the thickness of the "raft" to be one layer (2, 4). In an analogous fashion the morphology of WO₃ on SiO₂ was investigated by TEM combined with chemisorption of *n*butylamine on the exposed W⁶⁺ acid sites.

A WO₃ on SiO₂ (300 m²/g) sample was prepared by the incipient wetness impregnation method using ammonium *meta*tungstate followed by drying at 110°C and calcination at 500°C. For tungsten concentrations on SiO₂ below 5 wt%, the electron micrographs show clusters of WO₃, a polymeric tungsten oxide phase, with a narrow distribution of diameters about a mean of 1.2 nm (Fig. 1). Thus, it is clear that the 12-unit ammonium metatungstate polyanion has decomposed during drying and calcining to give much smaller WO₃ clusters. This observation is a unique example of a supported oxide with a cluster size distribution that is in the range of well dispersed noble metal catalysts (4, 5).

A one-to-one correspondence of the acid sites with WO₃ content, i.e., one acid site for *every* WO₃ introduced (below 5 wt%), was established by chemisorption of *n*-butylamine on samples of WO₃ on SiO₂ (6–9). The acid sites must therefore be present in the small WO₃ clusters or in the SiO₂ support immediately surrounding the WO₃ clusters.

For >5 and <20 wt% WO₃ on SiO₂ a bimodal distribution of cluster sizes was observed. For example, the number density and size of the small clusters observed on the surface of a 20 wt% WO₃ on SiO₂ sam-

FIG. 1. Particle size distribution of 2.3 wt% tungsten oxide on silica.

FIG. 2. ESCA W_{4f}/Si_{2S} intensity ratio as a function of the WO₃ content of WO₃ on SiO₂.

ple were similar to those seen on a 5 wt% sample. Three quarters of the WO₃ in the 20% sample, however, was present as 10–15 nm particles as observed by X-ray powder scans and electron microscopy. This bimodal distribution was substantiated by ESCA W/Si intensity ratio studies (10, 11) as a function of WO₃ content. We observed a linear increase of the $W_{4f_{7/2}}$ -to-Si_{2S} intensity ratio with tungsten content up to 5 wt% WO₃ and then the ratio deviated considerably from linearity with increasing tungsten content (see Fig. 2). The number of acid sites also increased linearly with WO₃ con-

tent until the large clusters began to form (see Fig. 3). After that point, the number of acid sites remained constant, independent of the WO_3 content.

The bimodal distribution of WO₃ clusters on SiO₂ above 5 wt% WO₃ content suggests that there are a limited number of sites on the SiO₂ surface which can interact with small WO_3 clusters and that, above that limit, WO₃ aggregates into a crystalline WO_3 phase. The strong interaction of WO_3 and an Al₂O₃ surface has recently been reported (12). This interaction may result in the formation of unique materials when WO_3 and Al_2O_3 are simultaneously supported on SiO₂. These supported mixed oxides were made by coimpregnation aluminum nitrate and ammonium of meta-tungstate in water by the incipient wetness method. The samples were then dried at 120°C and calcined at 500°C for 16 hr. For these samples there was a linear relationship between the W-to-Si ESCA intensity ratio and the tungsten content for all levels of W loading (see Fig. 4). Also, TEM failed to detect WO₃ clusters observed when WO_3 alone was supported on SiO_2 . This was the case even at high WO₃ and low Al₂O₃ loadings. Apparently, alumina incorporation onto the silica surface results in a large number of sites where WO₃ interacts so strongly that formation of clusters or particles of WO₁ is precluded. Distinct analogies are apparent for these WO_3 -

FIG. 3. Relationship of number of acid centers (μ mole/g) measured by butylamine titration and the WO₃ concentration (μ mole/g) for WO₃ on SiO₂.

FIG. 4. ESCA W_{4f}/Si_{2S} intensity ratio as a function of the WO₃ content of WO₃ and Al_2O_3 mixed oxides dispersed onto a SiO₂ support. Total supported mixed oxide content (WO₃ + Al_2O_3) of 20 wt%.

Al₂O₃ on SiO₂ systems and WO₃ on γ -Al₂O₃ itself (vide infra).

High-resolution transmission electron microscopy studies of tungsten oxide on y- Al_2O_3 (180 m²/g) show no detectable structure of the supported phase even at high surface coverage (25 wt% WO₃). Similar results have been reported by Delannay (13) for 15 wt% MoO₃ on Al₂O₃. When a 10 wt% WO₃ on Al₂O₃ sample was steamed in air (air sparged through water at 500 cm³/ min) at 900°C to reduce the surface area to 70 m²/g no agglomerated WO₃ phase or small clusters could be detected by TEM. Ten weight percent WO₃ represents about monolayer coverage of the 70 m²/g of surface area. An ESCA study of the W surface concentration showed a linear increase in the W/Al ratio with W content up to 10 wt% for a series of steamed samples. This result suggests an increase in WO₃ surface concentration as the alumina surface area collapses. Apparently, there is a very strong interaction between WO₃ and Al_2O_3 (12) which precludes cluster formation which is so predominant in the case of WO₃ on SiO₂ even at low WO₃ concentrations. Even in the case of a 25 wt% sample treated under

analogous conditions where the surface area was again reduced to 70 m²/g no small clusters could be detected. Large 15 nm particles of WO₃ were formed as the support surface area collapsed. The final state of this 25% sample was a bimodal distribution of a highly dispersed amorphous phase

and large particles of crystalline WO₃. EXAFS studies to determine the structure of WO₃ on SiO₂ and on γ -Al₂O₃ supports are in progress. On a 2.3 wt% WO₃ on SiO₂ sample, with 1.2 nm WO₃ clusters observed by TEM, both W-O bonds and a W-O-W bond have been identified. For WO₃ on γ -Al₂O₃, W–O bonds have also been identified, but no W-O-W bond has been observed. When the EXAFS and TEM results are considered together, it appears that isolated or randomly positioned WO₃ units are "locked" into the alumina hydroxyl structure of the Al₂O₃. Even a severe steam treatment of WO₃ on γ -Al₂O₃, which causes significant collapse of the alumina surface area, fails to form detectable three-dimensional particles unless the monolayer coverage limit is exceeded. In recent work by Hercules and co-workers (14) monolayer coverage of WO₃ on γ -Al₂O₃ was determined to occur at a loading of 24 wt% WO₃. Above 15 wt% WO₃ Raman spectroscopy studies suggests the WO₃ to be present as "an octahedral WO₃like interaction species" (14). Our EXAFS and TEM results are not necessarily inconsistent with this proposal as the "octahedral WO₃-like species" may not be detectable by the present techniques, or this species may not be a "polymeric" phase.

ACKNOWLEDGMENTS

The authors would like to acknowledge the excellent experimental work by N. C. Dispenziere, Jr. in the course of these studies.

REFERENCES

- 1. Prestridge, E. B., and Yates, D. J. C., Nature (London) 234, 345 (1971).
- Yates, D. J. C., Murrell, L. L., and Prestridge, E. B., J. Catal. 57, 41 (1979).

- Baker, R. T. K., Prestridge, E. B., and Garten, R. L., J. Catal. 59, 293 (1979).
- Yates, D. J. C., Murrell, L. L., and Prestridge, E. B., *in* "Growth and Properties of Metal Clusters" (J. Bourdon, ed.), Elsevier, Amsterdam, 1980.
- 5. Yates, D. J. C., and Sinfelt, J. H., J. Catal. 8, 348 (1967).
- 6. The *n*-butylamine adsorption technique employed dry box techniques using the Benesi method as reported previously (7) combined with ultrasonic treatment of the samples (65° C) for 10 min between butylamine additions to ensure equilibration (8). Dicinnamalacetone, benzalacetophenone, and anthraquinone indicator solutions were added to small aliquots of the titrated slurry to establish the titration endpoint. This procedure has been shown in our laboratory to provide acid center distributions very similar to those obtained by the standard Benesi method (9). Silica had zero acidity as measured by the above series of indicators.
- 7. Reitsma, H. J., and Boelhouwer, C., J. Catal. 33, 39 (1974).
- 8. Bertolacini, R. J., Anal. Chem. 35, 599 (1963).
- 9. Benesi, H. A., J. Amer. Chem. Soc. 78, 5490 (1956).
- Angevine, J. P., Delgass, W. N., and Vartuli, J. C., Proc. Sixth Int. Conr. Catal. 2, 611 (1976).

- 11. Fung, S. C., J. Catal. 58, 454 (1979).
- Thomas, R., Kerkkof, F. P. J. M., Moulijn, A. J., Medema, J., and DeBeer, V. H. J., J. Catal. 61, 559 (1980).
- 13. Delannay, F., Catal. Rev-Sci. Eng. 22, 141 (1980).
- 14. Salvate, L., Jr., Makovsky, L. E., Stencel, J. M., Brown, F. R., and Hercules, D. M., J. Phys. Chem. 85, 3700 (1981).
 - L. L. MURRELL D. C. GRENOBLE R. T. K. BAKER E. B. PRESTRIDGE S. C. FUNG R. R. CHIANELLI S. P. CRAMER

Corporate Research Exxon Research and Engineering Co. P. O. Box 45 Linden, New Jersey 07036

Received February 24, 1982; revised August 23, 1982